Introduction to Combinatorial Anabelian Geometry III

§1 Introduction
$\S 2$ Semi-graphs of Anabelioids §3 Application of CombGC §4 Proof of CombGC
K : an NF or an MLF $\hookrightarrow \bar{K}$: an alg closure of K $G_{K} \stackrel{\text { def }}{=} \operatorname{Gal}(\bar{K} / K)$
(g, r) : a pair of nonnegative integers s.t. $2 g-2+r>0$
C : a hyperbolic curve of type $(g, r) / K$
(g : the genus, r : the number of cusps)
$\pi_{1}((-))$: the étale fundamental gp of $(-)$

Recall: The homotopy ext seq

$$
1 \rightarrow \pi_{1}\left(C \times_{K} \bar{K}\right) \rightarrow \pi_{1}(C) \rightarrow G_{K} \rightarrow 1
$$

induces an outer representation

$$
\rho: G_{K} \rightarrow \operatorname{Out}\left(\pi_{1}\left(C \times_{K} \bar{K}\right)\right)
$$

Belyı̆, Voevodskiǐ, Matsumoto
If $r>0$, then ρ is injective.
Today,
Thm 1 (Hoshi-Mochizuki)
For any $(g, r), \rho$ is injective.
Method: Combinatorial Anabelian Geometry

Notations:

k : an alg closed field of char 0
X : a hyperbolic curve of type $(g, r) / k$
$X_{n} \stackrel{\text { def }}{=}\{\left(x_{1}, \cdots, x_{n}\right) \in \overbrace{X \times_{k} \cdots \times_{k} X}^{n} \mid x_{i} \neq x_{j}$ if $i \neq j\}$
$\Pi_{n} \stackrel{\text { def }}{=} \pi_{1}\left(X_{n}\right)$
In particular, the projections

$$
\begin{aligned}
& X_{n} \quad \rightarrow \quad X_{n-1} \quad \rightarrow \cdots \quad \rightarrow \quad X_{2} \quad \rightarrow \quad X \\
& \left(x_{1}, \cdots, x_{n}\right) \mapsto\left(x_{1}, \cdots, x_{n-1}\right) \mapsto \cdots \mapsto\left(x_{1}, x_{2}\right) \mapsto x_{1}
\end{aligned}
$$

induce a standard sequence of [outer] surjections

$$
\Pi_{n} \rightarrow \Pi_{n-1} \rightarrow \cdots \rightarrow \Pi_{2} \rightarrow \Pi_{1}
$$

Write $K_{m} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\Pi_{n} \rightarrow \Pi_{m}\right), \Pi_{0} \stackrel{\text { def }}{=}\{1\}$.
$\rightsquigarrow\{1\}=K_{n} \subseteq K_{n-1} \subseteq \cdots \subseteq K_{1} \subseteq K_{0}=\Pi_{n}$
$\alpha \in \operatorname{Aut}\left(\Pi_{n}\right)$ is F-admissible $\stackrel{\text { def }}{\Leftrightarrow}$ For any fiber subgroup
$J \subseteq \Pi_{n}$, it holds that $\alpha(J)=J$.

Recall:

$J \subseteq \Pi_{n}$ is a fiber subgroup $\stackrel{\text { def }}{\Leftrightarrow} J=\operatorname{Ker}\left(\Pi_{n} \rightarrow \Pi_{n^{\prime}}\right)$

- where $\Pi_{n} \rightarrow \Pi_{n^{\prime}}$ is induced by a proj $X_{n} \rightarrow X_{n^{\prime}}$.
$\alpha \in \operatorname{Aut}\left(\Pi_{n}\right)$ is C-admissible $\stackrel{\text { def }}{\Leftrightarrow}$
(i) $\alpha\left(K_{m}\right)=K_{m} \quad(0 \leq m \leq n)$
(ii) $\alpha: K_{m} / K_{m+1} \xrightarrow{\sim} K_{m} / K_{m+1}$ induces a bijection between the set of cusp'l inertia subgps $\subseteq K_{m} / K_{m+1}$
$\alpha \in \operatorname{Aut}\left(\Pi_{n}\right)$ is FC-admissible $\stackrel{\text { def }}{\Leftrightarrow} \alpha$ is F-admissible and C-admissible

Aut ${ }^{\mathrm{FC}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=}\left\{\right.$ FC-admissible automorphisms of $\left.\Pi_{n}\right\}$
Out ${ }^{\mathrm{FC}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=} \mathrm{Aut}^{\mathrm{FC}}\left(\Pi_{n}\right) / \operatorname{Inn}\left(\Pi_{n}\right)$

Observe: $X_{n+1} \rightarrow X_{n}$ "forgetting the last factor" induces

$$
\phi_{n}: \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)
$$

Thm $2 \quad \phi_{n}$ is injective for $n \geq 1$.

Remark:

(i) ϕ_{n} is bijective for $n \geq 4$.
(ii) Various $X_{n+1} \rightarrow X_{n}$ "forgetting a factor" induce the same Out ${ }^{\mathrm{FC}}\left(\Pi_{n+1}\right) \rightarrow$ Out $^{\mathrm{FC}}\left(\Pi_{n}\right)$.

Thm $2 \Rightarrow$ Thm 1

Let $X \stackrel{\text { def }}{=} C \times_{K} \bar{K}, k \stackrel{\text { def }}{=} \bar{K}$
$\left(\rightsquigarrow \pi_{1}\left(C \times_{K} \bar{K}\right)=\pi_{1}(X)=\Pi_{1}\right)$
Note: The outer rep'n $\rho: G_{K} \rightarrow \operatorname{Out}\left(\Pi_{1}\right)$ factors as

$$
G_{K} \rightarrow \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{1}\right) \hookrightarrow \operatorname{Out}\left(\Pi_{1}\right)
$$

Thus, to show that ρ is injective, it suffices to show that

$$
G_{K} \rightarrow \text { Out }^{\mathrm{FC}}\left(\Pi_{1}\right) \text { is injective. }
$$

This follows from the commutativity of the diagram

Today, for simplicity, we consider the proof of the injectivity of $\phi_{1}: \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{2}\right) \rightarrow \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{1}\right)$.
\Rightarrow It suffices to verify:

Prop 3

Let
$\operatorname{Aut}^{\mathrm{IFC}}\left(\Pi_{2}\right) \stackrel{\text { def }}{=}\left\{\alpha \in \operatorname{Aut}^{\mathrm{FC}}\left(\Pi_{2}\right) \mid \alpha \subset \Pi_{2} \underset{p_{2}}{\stackrel{p_{1}}{\longrightarrow} \Pi_{1} \longmapsto \Pi_{1} \longmapsto \alpha_{1}=\mathrm{id}}\right\}$,
$\Xi \stackrel{\text { def }}{=} \operatorname{Ker}\left(p_{1}\right) \cap \operatorname{Ker}\left(p_{2}\right)\left[\subseteq \Pi_{2}\right]$.
Then the injection

$$
\Xi \xrightarrow{\text { conj. }} \text { Aut }^{\mathrm{IFC}}\left(\Pi_{2}\right) \quad\left[\text { cf. the slimness of } \Pi_{2}\right]
$$

is bijective.
Indeed, let $\sigma \in \mathrm{Aut}^{\mathrm{FC}}\left(\Pi_{2}\right)$ s.t.

Observe: Let $\mathbb{D} \subseteq \Pi_{2}$ be a decomp. gp assoc. to the diagonal $\subseteq X \times_{k} X$. Then it holds that

$$
\sigma(\mathbb{D})=\pi \cdot \mathbb{D} \cdot \pi^{-1} \quad\left(\pi \in \Pi_{2}\right) .
$$

Thus, since

$$
\begin{aligned}
& \mathbb{D} \longrightarrow \Pi_{2} \\
& \downarrow \quad \downarrow^{\left(p_{1}, p_{2}\right)} \\
& \{(a, a)\} \longleftrightarrow \Pi_{1} \times \Pi_{1}
\end{aligned}
$$

we conclude that

$$
\sigma_{2}=\operatorname{Inn}\left(g_{2}\right) \quad\left(g_{2} \in \Pi_{1}\right)
$$

Let $g \in \Pi_{2}$ s.t. $p_{1}(g)=g_{1}$ and $p_{2}(g)=g_{2}$.

$$
\begin{aligned}
& \rightsquigarrow \operatorname{Inn}(g)^{-1} \circ \sigma \in \operatorname{Aut}^{\mathrm{IFC}}\left(\Pi_{2}\right) \approx \Xi \\
& \rightsquigarrow \quad \sigma \in \operatorname{Inn}\left(\Pi_{2}\right)
\end{aligned}
$$

In the following, we consider the proof of Prop 3.

A pointed stable curve $/ k$

A semi-graph of anabelioids of PSC-type

$$
\mathcal{B}\left(\pi_{1}\left(v_{1}\right)\right) \quad \mathcal{B}\left(\pi_{1}\left(v_{2}\right)\right)
$$

$$
\mathcal{B}\left(\pi_{1}\left(e_{1}\right)\right) \quad \mathcal{B}\left(\pi_{1}(e)\right) \quad \mathcal{B}\left(\pi_{1}\left(e_{2}\right)\right)
$$

- where
* irreducible component \leftrightarrow vertex
* node \leftrightarrow closed edge
* cusp \leftrightarrow open edge
* $\mathcal{B}(G)$: the connected anabelioid assoc. to G
\mathcal{G} : a semi-graph of anabelioids of PSC-type
\rightsquigarrow A natural notion of finite étale coverings of \mathcal{G}
\rightsquigarrow One can define the [profinite] fundamental gp $\Pi_{\mathcal{G}}$

Example: (A finite étale covering of degree 4)

Notation:
\mathcal{G} : a semi-graph of anabelioids of PSC-type
\mathbb{G} : the underlying semi-graph of \mathcal{G}
$\mathcal{V}(\mathcal{G})$: the set of vertices of \mathbb{G}
$\mathcal{N}(\mathcal{G})$: the set of nodes of \mathbb{G}
$\mathcal{C}(\mathcal{G})$: the set of cusps of \mathbb{G}
$\mathcal{E}(\mathcal{G}) \stackrel{\text { def }}{=} \mathcal{N}(\mathcal{G}) \cup \mathcal{C}(\mathcal{G})$
In particular, $z \in \mathcal{V}(\mathcal{G})$ (resp. $\mathcal{N}(\mathcal{G}) ; \mathcal{C}(\mathcal{G}) ; \mathcal{E}(\mathcal{G}))$ determines a(n) verticial (resp. nodal; cuspidal; edge-like) subgroup $\Pi_{z} \subseteq \Pi_{\mathcal{G}}$ [up to $\Pi_{\mathcal{G}}$-conjugacy].
G : a profinite group $\supseteq H$: a closed subgroup $Z_{G}(H) \stackrel{\text { def }}{=}\left\{g \in G \mid g \cdot h=h \cdot g\right.$ for $\left.{ }^{\forall} h \in H\right\}$
$N_{G}(H) \stackrel{\text { def }}{=}\left\{g \in G \mid g \cdot H \cdot g^{-1}=H\right\}$

Prop 4

(i) If $z \in \mathcal{V}(\mathcal{G})(\operatorname{resp} . \mathcal{E}(\mathcal{G}))$, then Π_{z} is slim (resp. $\cong \widehat{\mathbb{Z}}$.
(ii) Let $\left\{z_{1}, z_{2}\right\}$ be a subset of either $\mathcal{V}(\mathcal{G})$ or $\mathcal{E}(\mathcal{G})$. If $\Pi_{z_{1}} \cap \Pi_{z_{2}} \stackrel{\text { open }}{\subseteq} \Pi_{z_{2}}$, then $z_{1}=z_{2}$.
(iii) If $z \in \mathcal{V}(\mathcal{G}) \cup \mathcal{E}(\mathcal{G})$, then $C_{\Pi_{\mathcal{G}}}\left(\Pi_{z}\right)=\Pi_{z}$.
(iv) Let $z \in \mathcal{E}(\mathcal{G})$. Then $\Pi_{z} \subseteq \Pi_{\mathcal{G}}$ is cuspidal (resp. nodal) $\Leftrightarrow \Pi_{z}$ is contained in precisely one (resp. two) verticial subgroup(s).

Definition

\mathcal{G}, \mathcal{H} : semi-graphs of anabelioids of PSC-type $\alpha: \Pi_{\mathcal{G}} \xrightarrow{\sim} \Pi_{\mathcal{H}}:$ an isomorphism of profinite groups
(i) α is graphic $\Leftrightarrow \alpha$ arises from an isom $\mathcal{G} \xrightarrow{\sim} \mathcal{H}$
(ii) α is group-theoretically verticial (resp. nodal; cuspidal; edge-like) $\Leftrightarrow \alpha$ maps each verticial (resp. nodal; cusp'l; edge-like) subgp $\subseteq \Pi_{\mathcal{G}}$ onto a verticial (resp. nodal; cusp'l; edge-like) subgp $\subseteq \Pi_{\mathcal{H}}$, and, every verticial (resp. nodal; cusp'l; edge-like) subgp $\subseteq \Pi_{\mathcal{H}}$ arises in this fashion.

Prop 5

$\alpha: \Pi_{\mathcal{G}} \xrightarrow{\sim} \Pi_{\mathcal{H}}:$ an isomorphism of profinite groups Then α is graphic $\Leftrightarrow \alpha$ is group-theoretically verticial and group-theoretically edge-like.

Moreover, in this case, α arises a unique isom $\mathcal{G} \xrightarrow{\sim} \mathcal{H}$.
(Proof) Prop 5 follows from Prop 4, (ii), (iii).

Observe: $\Pi_{\mathcal{G}}$ is topologically finitely generated \rightsquigarrow A profinite topology on $\operatorname{Out}\left(\Pi_{\mathcal{G}}\right)$

Since the natural hom. $\operatorname{Aut}(\mathcal{G}) \rightarrow \operatorname{Out}\left(\Pi_{\mathcal{G}}\right)$ is an injection with closed image [cf. Prop 5],
\rightsquigarrow A profinite topology on $\operatorname{Aut}(\mathcal{G})$

Definition

I: a profinite group
We refer to a continuous hom.

$$
I \rightarrow \operatorname{Aut}(\mathcal{G})\left[\hookrightarrow \operatorname{Out}\left(\Pi_{\mathcal{G}}\right)\right]
$$

as an outer representation of PSC-type.

Thm 6 (A comb. ver. of the Grothendieck Conj.)
\mathcal{G}, \mathcal{H} : semi-graphs of anabelioids of PSC-type
$\rho_{I}: I \rightarrow \operatorname{Aut}(\mathcal{G}), \rho_{J}: J \rightarrow \operatorname{Aut}(\mathcal{H}):$
outer representations of PSC-type
$\alpha: \Pi_{\mathcal{G}} \xrightarrow{\sim} \Pi_{\mathcal{H}}:$ an isomorphism of profinite groups which fits into a commutative diagram

- where $I \xrightarrow{\sim} J$ is an isomorphism. Suppose that
(i) ρ_{I}, ρ_{J} are of NN-type [cf. §4].
(ii) $\mathcal{C}(\mathcal{G}) \neq \emptyset$ and α is group-theoretically cusp'l.

Then α is graphic [cf. Prop 5].

§3

(Proof of Prop 3)
Remark: At last year's seminar, we have already discussed the affine case of Prop 3!

For simplicity, let

To verify Prop 3 , we may replace $X \rightarrow \operatorname{Spec}(k)$ by a stable log curve

over a \log point $S^{\log }$. [cf. the deformation theory of stable log curves; the specialization isomorphism $\left.\Pi_{n}=\pi_{1}\left(X_{n}\right) \xrightarrow{\sim} \operatorname{Ker}\left(\pi_{1}^{\log }\left(Z_{n}^{\log }\right) \rightarrow \pi_{1}^{\log }\left(S^{\log }\right)\right)\right]$
$Z^{\log } \rightsquigarrow$ a semi-graph of anabelioids of PSC-type \mathcal{G}
Observe: The fiber $\left(Z_{2}^{\log }\right)_{e}$ of $\mathrm{pr}_{1}: Z_{2}^{\log } \rightarrow Z^{\log }$ at e is

\rightsquigarrow a semi-graph of anabelioids of PSC-type $\mathcal{G}_{/ e}$
In particular, we have

$$
\begin{gathered}
1 \longrightarrow \Pi_{2 / 1} \\
\uparrow_{2} \\
\Pi_{\mathcal{G} / e}
\end{gathered} \longrightarrow \Pi_{2} \xrightarrow{\Pi_{1}} \underset{\uparrow_{2}}{\Pi_{1}} \longrightarrow 1
$$

- where $\Pi_{2 / 1} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\Pi_{2} \rightarrow \Pi_{1}\right)$; the horizontal seq. is exact.
\rightsquigarrow an outer rep'n $\rho: \Pi_{1} \rightarrow \operatorname{Out}\left(\Pi_{2 / 1}\right)$
$Y \subseteq Z:$ the irreducible component corr. to v_{1}
$Y^{\text {log }}$: the smooth \log curve over $S^{\log }$ determined by the hyperbolic curve $Y \backslash\{e\}$
$\Pi_{n}^{\text {sub }} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\pi_{1}\left(Y_{n}^{\log }\right) \rightarrow \pi_{1}\left(S^{\log }\right)\right)$
$\Pi_{2 / 1}^{\text {sub }} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\Pi_{2}^{\text {sub }} \rightarrow \Pi_{1}^{\text {sub }}\right)$
Note: The natural closed imm. $Y \hookrightarrow Z$ induces a commutative diagram

This diagram induces a commutative diagram

- where the horizontal seq. is exact; the vertical arrows are injective.
\rightsquigarrow an outer rep'n $\rho^{\text {sub }}: \Pi_{1}^{\text {sub }} \rightarrow \operatorname{Out}\left(\Pi_{2 / 1}^{\text {sub }}\right)$

$$
\underline{\Pi_{2 / 1}^{\text {sub }}} \hookrightarrow \Pi_{2 / 1}
$$

$\Pi_{1}^{\text {sub }} \hookrightarrow \Pi_{1}$

$Y^{\log }$
$Z^{\log }$

Let $\alpha \in \operatorname{Aut}^{\mathrm{IFC}}\left(\Pi_{2}\right)$.
$\Pi_{e} \subseteq \Pi_{1}$: an edge-like subgp assoc. to e
\rightsquigarrow We have a comm. diag.

$$
\begin{aligned}
& \Pi_{e} \longleftrightarrow \Pi_{1} \xrightarrow{\rho} \operatorname{Out}\left(\Pi_{2 / 1}\right) \\
& \left\|\|_{1} \xrightarrow{\downarrow^{2}} \operatorname{Out}\left(\left.\alpha\right|_{\Pi_{2 / 1}}\right)\right. \\
& \Pi_{e} \longleftrightarrow \Pi_{1} \xrightarrow{\rho u t}\left(\Pi_{2 / 1}\right)
\end{aligned}
$$

Note: Since the composite $\Pi_{e} \hookrightarrow \Pi_{1} \rightarrow \operatorname{Out}\left(\Pi_{2 / 1}\right)$ factors as the composite of

$$
\Pi_{e} \rightarrow \operatorname{Aut}\left(\mathcal{G}_{/ e}\right) \text { with } \operatorname{Aut}\left(\mathcal{G}_{/ e}\right) \hookrightarrow \operatorname{Out}\left(\Pi_{2 / 1}\right)
$$

- where the resulting outer rep'n is of NN-type it follows from Thm 6 that $\left.\alpha\right|_{\Pi_{2 / 1}}$ is graphic.

Moreover, since

$$
\alpha \hookrightarrow \Pi_{2} \xrightarrow{p_{2}} \Pi_{1} \longmapsto \alpha_{2}=\mathrm{id}
$$

$\left.\alpha\right|_{\Pi_{2 / 1}}$ induces identity automorphism on " \mathbb{G} / e " [cf. Prop 4, (i), (ii)].

Fix an edge-like subgroup $\Pi_{e_{1}^{\circ}} \subseteq \Pi_{2 / 1}$ assoc. to e_{1}°.
Claim: ${ }^{\exists} \gamma \in \Xi$ s.t.

$$
\alpha\left(\Pi_{e_{1}^{\circ}}\right)=\gamma \cdot \Pi_{e_{1}^{\circ}} \cdot \gamma^{-1} .
$$

(Proof of Claim)
By the above Note, there exists $\gamma^{\prime} \in \Pi_{2 / 1}$ s.t.

$$
\alpha\left(\Pi_{e_{1}^{\circ}}\right)=\gamma^{\prime} \cdot \Pi_{e_{1}^{\circ}} \cdot \gamma^{\prime-1} .
$$

Thus, we have

$$
p_{2}\left(\Pi_{e_{1}^{\circ}}\right)=p_{2}\left(\gamma^{\prime}\right) \cdot p_{2}\left(\Pi_{e_{1}^{\circ}}\right) \cdot p_{2}\left(\gamma^{\prime}\right)^{-1} .
$$

By Prop4, (iii), we conclude that

$$
p_{2}\left(\gamma^{\prime}\right) \in p_{2}\left(\Pi_{e_{1}^{\circ}}\right) .
$$

In particular, by multiplying γ^{\prime} by a suitable $\in \Pi_{e_{1}^{\circ}}$, we obtain an element $\gamma \in \Xi$, as desired.

In light of Claim, to verify that $\alpha \in \Xi$, we may assume that

$$
\text { (1) } \quad \alpha\left(\Pi_{e_{1}^{\circ}}\right)=\Pi_{e_{1}^{\circ}} .
$$

$\Pi_{v_{1}^{\circ}}, \Pi_{v_{0}^{\circ}} \subseteq \Pi_{2 / 1}$: the unique verticial subgps assoc. to $v_{1}^{\circ}, v_{0}^{\circ}$ that contain $\Pi_{e_{1}^{\circ}}$ [cf. Prop 4, (iv)]
$\Pi_{2 / 1}^{\text {sub }} \subseteq \Pi_{2 / 1}$: the unique $\Pi_{2 / 1}$-conj. of the image of " $\Pi_{2 / 1}^{\text {sub }} \hookrightarrow \Pi_{2 / 1}$ " that contains and is topologically generated by $\Pi_{v_{1}^{\circ}}, \Pi_{v_{0}^{\circ}}$
$\rightsquigarrow B y(1)$ and the graphicity of $\left.\alpha\right|_{\Pi_{2 / 1}}$, we conclude:
(2) $\alpha\left(\Pi_{v_{1}^{\circ}}\right)=\left(\Pi_{v_{1}^{\circ}}\right)$;
(3) $\alpha\left(\Pi_{v_{0}^{\circ}}\right)=\left(\Pi_{v_{0}^{\circ}}\right)$;
(4) $\alpha\left(\Pi_{2 / 1}^{\text {sub }}\right)=\left(\Pi_{2 / 1}^{\text {sub }}\right)$.

Observe: Since $C_{\Pi_{2 / 1}}\left(\Pi_{2 / 1}^{\text {sub }}\right)=\Pi_{2 / 1}^{\text {sub }}[$ cf. Prop 4, (iii)], the diagram

$$
\begin{aligned}
& \Pi_{1}^{\text {sub }} \xrightarrow{\rho^{\text {sub }}} \operatorname{Out}\left(\Pi_{2 / 1}^{\text {sub }}\right) \\
& \| \quad \downarrow^{2} \operatorname{Out}\left(\left.\alpha\right|_{\Pi_{2 / 1}^{\mathrm{sun}}}\right) \\
& \Pi_{1}^{\text {sub }} \xrightarrow{\rho^{\text {sub }}} \operatorname{Out}\left(\Pi_{2 / 1}^{\text {sub }}\right)
\end{aligned}
$$

[cf. (4)] commutes. Thus, $\left.\alpha\right|_{\Pi_{2 / 1}^{\text {sub }}}$ arises from an $\alpha^{\text {sub }} \in \operatorname{Aut}\left(\Pi_{2}^{\text {sub }}\right)\left[\mathrm{cf}\right.$. the slimness of $\left.\Pi_{2 / 1}^{\text {sub }}\right]$.

Moreover, it follows from the construction that

$$
\alpha^{\text {sub }} \in \mathrm{Aut}^{\mathrm{IFC}}\left(\Pi_{2}^{\text {sub }}\right) .
$$

On the other hand, by the affine case of Prop 3 [cf. Remark at the beginning of the proof], we have

$$
\text { Aut }{ }^{\mathrm{IFC}}\left(\Pi_{2}^{\text {sub }}\right) \underset{\Xi^{\text {sub }} \stackrel{\text { def }}{=} \Xi \cap \Pi_{2}^{\text {sub }} . . .}{\sim}
$$

$\left.\rightsquigarrow \alpha\right|_{\Pi_{2 / 1}^{\text {sub }}}$ is a Ξ-inner automorphism!
Thus, to verify that $\alpha \in \Xi$, we may assume that

$$
\begin{gathered}
\text { (5) }\left.\alpha\right|_{\Pi_{2 / 1}^{\text {sub }}}=\text { id. } \\
\left.\rightsquigarrow \quad(6) \quad \alpha\right|_{\Pi_{v_{0}^{\circ}}}=\text { id }[\text { cf. (3) }]
\end{gathered}
$$

$\Pi_{e_{2}^{\circ}} \subseteq \Pi_{2 / 1}$: an edge-like subgp assoc. to e_{2}° which is contained in $\Pi_{v_{0}^{\circ}}$
$\Pi_{v_{2}^{\circ}} \subseteq \Pi_{2 / 1}$: the unique verticial subgp assoc. to v_{2} that contains $\Pi_{e_{2}^{\circ}}[\mathrm{cf}$. Prop 4, (iv)]

$$
\rightsquigarrow(7) \quad \alpha\left(\Pi_{e_{2}^{\circ}}\right)=\Pi_{e_{2}^{\circ}}
$$

By (7) and the graphicity of $\left.\alpha\right|_{\Pi_{2 / 1}}$, we conclude:

$$
\text { (8) } \quad \alpha\left(\Pi_{v_{2}^{\circ}}\right)=\Pi_{v_{2}^{\circ}} \text {. }
$$

By (8), we obtain a comm. diag.

$$
\begin{aligned}
& \Pi_{v_{2}^{\circ}} \xrightarrow[\left.\alpha\right|_{\eta_{2}^{\circ}}]{\sim} \Pi_{v_{2}^{\circ}} \\
& \downarrow 2 \downarrow^{2} \\
& p_{2}\left(\Pi_{v_{2}^{\circ}}\right)=p_{2}\left(\Pi_{v_{2}^{\circ}}\right)
\end{aligned}
$$

Hence, we have
(9) $\left.\alpha\right|_{\Pi_{v_{2}^{\circ}}}=$ id.

Since $\Pi_{2 / 1}$ is topologically generated by $\Pi_{2 / 1}^{\text {sub }}$ and $\Pi_{v_{2}^{\circ}}$, it follows from (5), (9) that

$$
\left.(10) \quad \alpha\right|_{\Pi_{2 / 1}}=\mathrm{id}
$$

Finally, it follows from (10) and the assumption

$$
\alpha \circlearrowright \Pi_{2} \xrightarrow{p_{1}} \Pi_{1} \longrightarrow \alpha_{1}=\mathrm{id}
$$

that $\alpha=\mathrm{id}$ [cf. the slimness of $\Pi_{2 / 1}$].

Fix a universal covering $\widetilde{\mathcal{G}} \rightarrow \mathcal{G}$.
$\mathcal{V}(\widetilde{\mathcal{G}}) \stackrel{\text { def }}{=} \lim _{\leftrightarrows} \mathcal{V}\left(\mathcal{G}^{\prime}\right)$
$\mathcal{N}(\widetilde{\mathcal{G}}) \stackrel{\text { def }}{=} \lim _{\rightleftarrows} \mathcal{N}\left(\mathcal{G}^{\prime}\right)$
$\mathcal{C}(\widetilde{\mathcal{G}}) \stackrel{\text { def }}{=} \lim _{\rightleftarrows} \mathcal{C}\left(\mathcal{G}^{\prime}\right)$
$\mathcal{E}(\widetilde{\mathcal{G}}) \stackrel{\text { def }}{=} \mathcal{N}(\widetilde{\mathcal{G}}) \cup \mathcal{C}(\widetilde{\mathcal{G}})$

- where the proj. limits are over all conn. fin. étale subcoverings $\mathcal{G}^{\prime} \rightarrow \mathcal{G}$ of $\widetilde{\mathcal{G}} \rightarrow \mathcal{G}$

Let $\square \in\{\mathcal{V}, \mathcal{E}\}$.
If $\tilde{z} \in \square(\widetilde{\mathcal{G}})$, then we write $\tilde{z}\left(\mathcal{G}^{\prime}\right)$ for the image of $\tilde{z} \quad$ via the natural map $\square(\widetilde{\mathcal{G}}) \rightarrow \square\left(\mathcal{G}^{\prime}\right)$.
$\Pi_{\tilde{z}} \subseteq \Pi_{\mathcal{G}}$: a unique \square-like subgroup assoc. to $\tilde{z}(\mathcal{G})$
s.t. for every conn. fin. étale subcovering $\mathcal{G}^{\prime} \rightarrow \mathcal{G}$ of $\widetilde{\mathcal{G}} \rightarrow \mathcal{G}$, the subgroup $\Pi_{\tilde{z}} \cap \Pi_{\mathcal{G}^{\prime}} \subseteq \Pi_{\mathcal{G}^{\prime}}$ is a \square-like subgroup assoc. to $\tilde{z}\left(\mathcal{G}^{\prime}\right)$
$\rho_{I}: I \rightarrow \operatorname{Aut}(\mathcal{G})$: an outer rep'n of PSC-type
$\Pi_{I} \stackrel{\text { def }}{=} \Pi_{\mathcal{G}} \stackrel{\text { out }}{\rtimes} I$: the profinite group obtained by pulling back the exact sequence

$$
1 \longrightarrow \Pi_{\mathcal{G}} \xrightarrow{\text { conj. }} \operatorname{Aut}\left(\Pi_{\mathcal{G}}\right) \longrightarrow \operatorname{Out}\left(\Pi_{\mathcal{G}}\right) \longrightarrow 1
$$

by the composite $I \xrightarrow{{ }_{\mathcal{S}}} \operatorname{Aut}(\mathcal{G}) \hookrightarrow \operatorname{Out}\left(\Pi_{\mathcal{G}}\right)$.
\rightsquigarrow we have a comm. diag.

- where the horizontal seq. are exact.

Definition

(i) If $\tilde{z} \in \mathcal{V}(\widetilde{\mathcal{G}})$ or $\mathcal{N}(\widetilde{\mathcal{G}})$, then we shall write

$$
I_{\tilde{z}} \stackrel{\text { def }}{=} Z_{\Pi_{I}}\left(\Pi_{\tilde{z}}\right) \subseteq D_{\tilde{z}} \stackrel{\text { def }}{=} N_{\Pi_{I}}\left(\Pi_{\tilde{z}}\right) .
$$

(ii) If $\tilde{z} \in \mathcal{C}(\widetilde{\mathcal{G}})$, then we shall write

$$
I_{\tilde{z}} \stackrel{\text { def }}{=} \Pi_{\tilde{z}} \subseteq D_{\tilde{z}} \stackrel{\text { def }}{=} N_{\Pi_{I}}\left(\Pi_{\tilde{z}}\right) .
$$

Lem 7
(i) Let $\tilde{v} \in \mathcal{V}(\widetilde{\mathcal{G}})$. Then the composite $I_{\tilde{v}} \hookrightarrow \Pi_{I} \rightarrow I$ is injective.
(ii) Let $\tilde{e} \in \mathcal{N}(\widetilde{\mathcal{G}})$ that abuts to $\tilde{v} \in \mathcal{V}(\widetilde{\mathcal{G}})$. Then it holds that $I_{\tilde{v}} \subseteq I_{\tilde{e}}$.
(Proof) (i) follows from Prop 4, (i), (iii). (ii) is easy.

Definition

$\rho_{I}: I \rightarrow \operatorname{Aut}(\mathcal{G}):$ an outer rep'n of PSC-type ρ_{I} is of NN-type (resp. SNN-type) \Leftrightarrow
(1) $I \cong \widehat{\mathbb{Z}}$.
(2) For every $\tilde{v} \in \mathcal{V}(\widetilde{\mathcal{G}})$, the image of the composite $I_{\tilde{v}} \hookrightarrow \Pi_{I} \rightarrow I$ is open (resp. I) [cf. Lem 7, (i)].
(3) For every $\tilde{e} \in \mathcal{N}(\widetilde{\mathcal{G}})$, the natural inclusions $I_{\tilde{v}_{1}}, I_{\tilde{v}_{2}} \subseteq I_{\tilde{e}}-$ where \tilde{e} abuts to $\tilde{v}_{1}, \tilde{v}_{2} \in \mathcal{V}(\widetilde{\mathcal{G}})$ [cf. Lem 7, (ii)] - induces an open injection $I_{\tilde{v}_{1}} \times I_{\tilde{v}_{2}} \hookrightarrow I_{\tilde{e}}$.

Lem $8 \quad \rho_{I}: I \rightarrow \operatorname{Aut}(\mathcal{G}):$ of SNN-type
(i) Let $\tilde{v} \in \mathcal{V}(\widetilde{\mathcal{G}})$. Then $D_{\tilde{v}}=\Pi_{\tilde{v}} \times I_{\tilde{v}}$.
(ii) Let $\tilde{v} \in \mathcal{V}(\widetilde{\mathcal{G}}) ; \tilde{e} \in \mathcal{E}(\widetilde{\mathcal{G}})$ an element that abuts to \tilde{v}. Then $D_{\tilde{e}}=\Pi_{\tilde{e}} \times I_{\tilde{v}}$.
(iii) $\Pi_{\tilde{v}}=Z_{\Pi_{I}}\left(I_{\tilde{v}}\right) \cap \Pi_{\mathcal{G}}=N_{\Pi_{I}}\left(I_{\tilde{v}}\right) \cap \Pi_{\mathcal{G}}$.

Notation:
(i) Let $v, w \in \mathcal{V}(\mathcal{G})$. We shall write $\delta(v, w) \leq n$ if the following conditions are satisfied:

$$
* \text { If } n=0, \text { then } v=w
$$

* If $n \geq 1$, then there exist

$$
\left\{e_{1}, \ldots, e_{n}\right\} \subseteq \mathcal{N}(\mathcal{G}) ;\left\{v_{0}, \ldots, v_{n}\right\} \subseteq \mathcal{V}(\mathcal{G})
$$

- where $v_{0}=v ; v_{n}=w ; e_{i}$ abuts to v_{i-1}, v_{i}.

We shall write $\delta(v, w)=n$ if $\delta(v, w) \leq n$ and $\delta(v, w) \not \leq n-1$.
(ii) Let $\tilde{v}, \tilde{w} \in \mathcal{V}(\widetilde{\mathcal{G}})$. We shall write

$$
\delta(\tilde{v}, \tilde{w}) \stackrel{\text { def }}{=} \sup _{\mathcal{G}^{\prime}}\left\{\delta\left(\tilde{v}\left(\mathcal{G}^{\prime}\right), \tilde{w}\left(\mathcal{G}^{\prime}\right)\right)\right\} .
$$

Lem 9

$\rho_{I}: I \rightarrow \operatorname{Aut}(\mathcal{G}):$ an outer rep'n of PSC-type
Let $\tilde{v}_{1}, \tilde{v}_{2} \in \mathcal{V}(\widetilde{\mathcal{G}})$.
Consider the following 8 conditions:
(1) $\delta\left(\tilde{v}_{1}, \tilde{v}_{2}\right)=0$.
(2) $\delta\left(\tilde{v}_{1}, \tilde{v}_{2}\right)=1$.
(3) $\delta\left(\tilde{v}_{1}, \tilde{v}_{2}\right)=2$.
(4) $\delta\left(\tilde{v}_{1}, \tilde{v}_{2}\right) \geq 3$.
$\left(1^{\prime}\right) D_{\tilde{v}_{1}}=D_{\tilde{v}_{2}}$.
$\left(2^{\prime}\right) D_{\tilde{v}_{1}} \neq D_{\tilde{v}_{2}} ; D_{\tilde{v}_{1}} \cap D_{\tilde{v}_{2}} \cap \Pi_{\mathcal{G}} \neq\{1\}$.
$\left(3^{\prime}\right) D_{\tilde{v}_{1}} \cap D_{\tilde{v}_{2}} \neq\{1\} ; D_{\tilde{v}_{1}} \cap D_{\tilde{v}_{2}} \cap \Pi_{\mathcal{G}}=\{1\}$.
(4') $D_{\tilde{v}_{1}} \cap D_{\tilde{v}_{2}}=\{1\}$.

Then we have equivalences
$(1) \Leftrightarrow\left(1^{\prime}\right)$;
$(2) \Leftrightarrow\left(2^{\prime}\right) ;$
$(3) \Leftrightarrow\left(3^{\prime}\right) ;$
$(4) \Leftrightarrow\left(4^{\prime}\right)$.

Moreover, suppose that ρ_{I} is of SNN-type.
Then if $\left(3^{\prime}\right)$ is satisfied, then there exists a unique $\tilde{v}_{3} \in \mathcal{V}(\widetilde{\mathcal{G}})$ s.t.

$$
\delta\left(\tilde{v}_{1}, \tilde{v}_{3}\right)=\delta\left(\tilde{v}_{2}, \tilde{v}_{3}\right)=1 \quad \text { and } \quad D_{\tilde{v}_{1}} \cap D_{\tilde{v}_{2}}=I_{\tilde{v}_{3}}
$$

(Proof of Thm 6)

To verify Thm 6 , by replacing Π_{I} by an open subgroup $\subseteq \Pi_{I}$, we may assume that \mathcal{G}, \mathcal{H} are sturdy, and that ρ_{I}, ρ_{J} are of SNN-type [cf. Prop 4, (iii)].

* sturdy ... Every irr. component of the pointed stable curve that gives rise to \mathcal{G} satisfies the following:

The genus of the normalization is ≥ 2.

Thus, to verify Thm 6, it suffices to verify

Claim A:

$\overline{\mathcal{G}}, \overline{\mathcal{H}}$: the compactifications of \mathcal{G}, \mathcal{H}, respectively Then the isom. $\bar{\alpha}: \Pi_{\overline{\mathcal{G}}} \xrightarrow{\sim} \Pi_{\overline{\mathcal{H}}}$ which is induced by α is graphic.
[We apply Claim A to various conn. fin. ét. coverings!]

Gp-theoretically verticial \Rightarrow Gp-theoretically nodal. It follows from Prop 5, Lem 10 that Claim $\mathrm{A} \Leftrightarrow$

Claim B:
$\bar{\alpha}: \Pi_{\overline{\mathcal{G}}} \xrightarrow{\sim} \Pi_{\overline{\mathcal{H}}}$ is gp-theoretically verticial.
(Proof of Claim B) First, let us prove that:

There exists a verticial subgroup $\nabla \subseteq \Pi_{\overline{\mathcal{G}}}$ s.t. $\bar{\alpha}(\nabla)$ is a verticial subgroup $\subseteq \Pi_{\overline{\mathcal{H}}}$.

Write $I \rightarrow \operatorname{Out}\left(\Pi_{\overline{\mathcal{G}}}\right)$ (resp. $J \rightarrow \operatorname{Out}\left(\Pi_{\overline{\mathcal{H}}}\right)$) for the outer rep'n of PSC-type determined by ρ_{I} (resp. ρ_{J}) and

$$
\bar{\Pi}_{I} \stackrel{\text { def }}{=} \Pi_{\overline{\mathcal{G}}} \stackrel{\text { out }}{\rtimes} I, \quad \bar{\Pi}_{J} \stackrel{\text { def }}{=} \Pi_{\overline{\mathcal{H}}} \stackrel{\text { out }}{\rtimes} J
$$

$\rightsquigarrow \alpha: \Pi_{\mathcal{G}} \xrightarrow{\sim} \Pi_{\mathcal{H}}[$ and $\bar{\alpha}]$ induces a comm. diag.

$$
\Pi_{I}=\Pi_{\mathcal{G}} \stackrel{\text { out }}{\rtimes} I \underset{\beta}{\sim} \Pi_{\mathcal{H}} \stackrel{\text { out }}{\rtimes} J=\Pi_{J}
$$

(*)

$$
\bar{\Pi}_{I}=\Pi_{\overline{\mathcal{G}}} \stackrel{\text { out }}{\rtimes} I \underset{\bar{\beta}}{\sim} \Pi_{\overline{\mathcal{H}}} \stackrel{\text { out }}{\rtimes} J=\bar{\Pi}_{J}
$$

- where the vertical arrows are the surj. induced by $\Pi_{\mathcal{G}} \rightarrow \Pi_{\overline{\mathcal{G}}}, \quad \Pi_{\mathcal{H}} \rightarrow \Pi_{\overline{\mathcal{H}}}$.

By assumption (ii), ${ }^{\exists} e_{\mathcal{G}} \in \mathcal{C}(\mathcal{G}),{ }^{\exists} e_{\mathcal{H}} \in \mathcal{C}(\mathcal{H})$ s.t.

$$
\beta\left(D_{e_{\mathcal{G}}}\right)=D_{e_{\mathcal{H}}} .
$$

Write $v_{\mathcal{G}} \in \mathcal{V}(\mathcal{G})\left(\right.$ resp. $\left.v_{\mathcal{H}} \in \mathcal{V}(\mathcal{H})\right)$ for the vertex to which $e_{\mathcal{G}}$ (resp. $e_{\mathcal{H}}$) abuts.

By Lem 8, (ii), the diag. (\star) induces a diag.

$$
\begin{aligned}
& D_{e_{\mathcal{G}}} \underset{\beta}{\sim} D_{e_{\mathcal{H}}} \\
& \downarrow \\
& I_{v_{\mathcal{G}}} \stackrel{\rightharpoonup}{\bar{\beta}} \\
& \stackrel{\sim}{\sim} \\
& I_{v_{\mathcal{H}}}
\end{aligned}
$$

Thus, we conclude from Lem 8, (iii), that

$$
\begin{aligned}
\bar{\alpha}\left(\Pi_{v_{\mathcal{G}}}\right) & =\bar{\beta}\left(N_{\bar{\Pi}_{I}}\left(I_{v_{\mathcal{G}}}\right) \cap \Pi_{\overline{\mathcal{G}}}\right) \\
& =N_{\bar{\Pi}_{I}}\left(\bar{\beta}\left(I_{v_{\mathcal{G}}}\right)\right) \cap \Pi_{\overline{\mathcal{H}}} \\
& =N_{\bar{\Pi}_{I}}\left(I_{v_{\mathcal{H}}}\right) \cap \Pi_{\overline{\mathcal{H}}} \\
& =\Pi_{v_{\mathcal{H}}} . \rightsquigarrow \nabla \stackrel{\text { def }}{=} \Pi_{v_{\mathcal{G}}}
\end{aligned}
$$

Therefore, to verify Claim B, it suffices to show that:

Let $\tilde{v}_{1}, \tilde{v}_{2} \in \mathcal{V}(\widetilde{\overline{\mathcal{G}}})$ s.t. $\delta\left(\tilde{v}_{1}(\overline{\mathcal{G}}), \tilde{v}_{2}(\overline{\mathcal{G}})\right) \leq 1$. Then if $\bar{\alpha}\left(\Pi_{\tilde{v}_{1}}\right)$ is verticial, then $\bar{\alpha}\left(\Pi_{\tilde{v}_{2}}\right)$ is verticial.

If $\tilde{v}_{1}(\overline{\mathcal{G}})=\tilde{v}_{2}(\overline{\mathcal{G}})$, then it is immediate. Suppose that $\tilde{v}_{1}(\overline{\mathcal{G}}) \neq \tilde{v}_{2}(\overline{\mathcal{G}})$ and that $\bar{\alpha}\left(\Pi_{\tilde{v}_{1}}\right)$ is verticial.

Observe: There exist $\tilde{w}_{1}, \tilde{u}_{1}, \tilde{w}_{2} \in \mathcal{V}(\widetilde{\overline{\mathcal{G}}})$ s.t.
(a) $\quad \tilde{v}_{1}(\overline{\mathcal{G}})=\tilde{w}_{1}(\overline{\mathcal{G}})=\tilde{u}_{1}(\overline{\mathcal{G}}) ; \quad \tilde{v}_{2}(\overline{\mathcal{G}})=\tilde{w}_{2}(\overline{\mathcal{G}})$.
(b) $\delta\left(\tilde{w}_{1}, \tilde{u}_{1}\right)=2$.
(c) $\delta\left(\tilde{w}_{2}, \tilde{w}_{1}\right)=\delta\left(\tilde{w}_{2}, \tilde{u}_{1}\right)=1$. [cf. the next page]
(a) \rightsquigarrow There exist $\tilde{w}_{1}^{\prime}, \tilde{u}_{1}^{\prime} \in \mathcal{V}(\widetilde{\overline{\mathcal{H}}})$ s.t.

$$
\bar{\beta}\left(D_{\tilde{w}_{1}}\right)=D_{\tilde{w}_{1}^{\prime}}, \quad \bar{\beta}\left(D_{\tilde{u}_{1}}\right)=D_{\tilde{u}_{1}^{\prime}} .
$$

$(\mathrm{b}),(\mathrm{c}), \operatorname{Lem} 9 \rightsquigarrow D_{\tilde{w}_{1}} \cap D_{\tilde{u}_{1}}=I_{\tilde{w}_{2}}$
$\rightsquigarrow D_{\tilde{w}_{1}^{\prime}} \cap D_{\tilde{u}_{1}^{\prime}} \neq\{1\}, \quad D_{\tilde{w}_{1}^{\prime}} \cap D_{\tilde{u}_{1}^{\prime}} \cap \Pi_{\overline{\mathcal{H}}}=\{1\}$
$\rightsquigarrow{ }^{\exists} \tilde{w}_{2}^{\prime} \in \mathcal{V}(\widetilde{\overline{\mathcal{H}}})$ s.t. $\quad D_{\tilde{w}_{1}^{\prime}} \cap D_{\tilde{u}_{1}^{\prime}}=I_{\tilde{w}_{2}^{\prime}} \quad$ [cf. Lem 9]
$\rightsquigarrow \bar{\beta}\left(I_{\tilde{w}_{2}}\right)=I_{\tilde{w}_{2}^{\prime}}$
Thus, it follows from Lem 8, (iii), that

$$
\bar{\alpha}\left(\Pi_{\tilde{w}_{2}}\right)=\Pi_{\tilde{w}_{2}^{\prime}} .
$$

\rightsquigarrow We conclude from (a) that $\bar{\alpha}\left(\Pi_{\tilde{v}_{2}}\right)$ is verticial !
$\overline{\mathcal{G}}^{\prime} \rightarrow \overline{\mathcal{G}}:$ a connected finite étale covering of degree $=2$

